# The Chemical Transport of Molybdenum and Tungsten and of their Dioxides and Sulfides

HARALD SCHÄFER, THEODOR GROFE, AND MARITA TRENKEL

Anorganisch-Chemisches Institut, Westfälische Wilhelms Universität, 44 Münster (Westf.), Germany

Received December 13, 1972

Experiments have been made and an extensive thermodynamic discussion has taken place concerning the chemical transport of Mo, W,  $MoO_2$ ,  $MO_2$ ,  $MO_2$  and  $WS_2$  in the presence of iodine. Efforts have been made to find the species via which Mo and W can migrate within the gas phase.

Results: In each case the transport proceeds via the oxide iodides  $MoO_2J_2$  and  $WO_2J_2$  respectively, as already known for the dioxides. Thus the chemical transport of Mo, W,  $MoS_2$  and  $WS_2$  needs not only  $J_2$  but also  $H_2O$ , usually liberated from the wall of the quartz ampoule.

By means of  $J_2 + H_2O$ , the metals can be transported into the high temperature region of the ampoule (e.g.,  $1050 \rightarrow 1150^{\circ}C$ ), whereas the transport of the sulfides proceeds in the opposite direction (e.g.,  $900 \rightarrow 700^{\circ}C$ ).

For the sulfide-transport the influence of the ratio of the transport agents  $J_2/H_2O$  has been discussed.

The water content of the quartz glass out of which the ampoules are made is an important source for water, influencing the reactions.

The addition of graphite which considerably lowers the  $H_2O$  partial pressure prevents any transport of the metals or the sulfides, which proves that the use of  $J_2$  alone as a transport agent is insufficient in these cases.

The gaseous iodides  $MoJ_x$  and  $WJ_z$  are without any importance under the experimental conditions used for the transport of the metals, their dioxides and sulfides.

The partial pressures of  $MoO_2(OH)_2$  and  $WO_2(OH)_2$  under the experimental conditions chosen may usually be neglected. But in the system  $MoO_2/H_2O$  the transport via  $MoO_2(OH)_2$  (1000  $\rightarrow$  800°C) has been observed.

The synthesis of  $MoO_2$  and  $WO_2$ , starting with the elements or with powder of metal and trioxide is promoted by the addition of  $J_2$ . The reaction steps involved are discussed.

#### 1. Introduction

The metals molybdenum and tungsten do not belong to that group of elements which have been purified by means of the classical van Arkel transport method via gaseous iodides. Obviously the reason is the instability of the iodides at temperatures necessary for their evaporation. If this were so, the chemical transport of compounds of these elements via gaseous iodides would be impossible. Contrary to this thermodynamic expectation, the transport by means of iodine of the following compounds has been described:

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain It has been generally believed that the transport of these substances (as that of many other sulfides) proceeds via gaseous iodides. From the consideration mentioned above this must be evidently wrong. We supposed (6), as a solution of this discrepancy, that in these cases the transport in fact proceeds via gaseous oxide iodides. This means, that  $J_2$  and  $H_2O$  introduced either as an impurity or coming from the wall of the quartz reaction tube act both together as transport agents. To check this assumption the following investigation has been undertaken.

It should be emphasized that it is very difficult to exclude traces of water, even if one prepares the ampoules from a specially produced kind of quartz glass, with a water content as low as possible (~0.01 wt %; ir spectrum), and even if these ampoules are degassed under high vacuum at 1000°C. These precautions can not prevent the diffusion of water out of the wall into the reaction room during long heating times.

### 2. Experiments and Their Results

# 2.1. General Remarks Concerning the Experimental Technique

In all experiments chemically pure substances have been used. The graphite in grains of the size of  $\sim 0.1-0.5$  mm was of highest purity for spectral analysis. The tube material in each case was quartz glass with a very low water content (ir spectrum). For dimensions of the transport ampoules see Tables I–IV. After charging the ampoules are sealed under high vacuum. Both ends of the ampoule are connected with small quartz glass tubes of 2 cm in length and of an inside diameter of 0.4 cm, into which later on the thermocouples are fixed.

The ampoule is heated in horizontal position in an electric furnace with two zones regulated independently.

2.2. Chemical Transport of the Dioxides  $MoO_2$  and  $WO_2$ 

 $MoO_2$ . Transport experiments using  $MoO_2$  as a solid and  $J_2$  as a transport agent proved successful (7-9). Table I gives data of our earlier experiments unpublished so far (7).

### TABLE I

CHEMICAL TRANSPORT OF MOO2<sup>a</sup>

|              | Introduced tra               | nsp. agent                 |                           |                                 |
|--------------|------------------------------|----------------------------|---------------------------|---------------------------------|
| Expt.<br>No. | [mg/m]]                      | P<br>at av. temp.<br>[atm] | -<br>Temperature<br>[0°C] | Yield,<br>MoO₂ crystals<br>[mg] |
| 1            | 0                            | 0                          | 800 ← 1000                | 3                               |
| 2            | 0.61 H <sub>2</sub> O        | 3.2 H <sub>2</sub> O       | 800 ~ 1000                | ~50                             |
| 3            | J₂ from 1.57 CuJ             | $0.40 J_2$                 | 800 - 1000                | 146                             |
| 4            | J <sub>2</sub> from 1.56 CuJ | 0.39 J <sub>2</sub>        | 800 ← 1000                | 164                             |
| 5            | 0.52 H <sub>2</sub> O        | 2.3 H₂O                    | 650 ← 730                 | 0                               |
| 6            | $1.26 J_2$                   | $0.39 J_2$                 | <b>650 ← 730</b>          | 15                              |

<sup>a</sup> Source material 1.0 g  $MoO_2$ ; ampoule dimensions 9 mm inside diameter, 150 mm length; heating time 4 days. The arrow gives the transport direction which has been checked.

TABLE II

Synthesis of WO2 (Crystals)<sup>a</sup>

| Trant        | Cha  | arge in mr      | nole           | Transition            |                           |
|--------------|------|-----------------|----------------|-----------------------|---------------------------|
| Expt.<br>No. | w    | WO <sub>3</sub> | O <sub>2</sub> | [mg/ml]               | Yield in the 800°C region |
| 1            | 5.86 | 0               | 1.42           | 0                     | 0                         |
| 2            | 5.53 | 0               | 1.29           | $1.2 J_2$             | ~300 mg WO <sub>2</sub>   |
| 3            | 4.00 | 7.99            | 0              | 0                     | Some mg of blue material  |
| 4            | 4.00 | 8.02            | 0              | 0.30 H <sub>2</sub> O | 24 mg of blue material    |
| 5            | 3.99 | 7.95            | 0              | $3.1 J_2 + 0.30 H_2O$ | 681 mg WO <sub>2</sub>    |
| 6            | 4.01 | 8.00            | 0              | 3.04 J <sub>2</sub>   | 2.06 g WO <sub>2</sub>    |
| 7            | 6.01 | 8.05            | 0              | 3.0 J <sub>2</sub>    | 2.18 g WO <sub>2</sub>    |

" Ampoule dimensions: 16 mm inside diameter, 170 mm in length;  $\sim$ 34 ml volume. Heating time 24 hr at 1000  $\rightarrow$  800°C.

Experiment 1 without a transport agent added nevertheless shows a small transport effect. It is caused by water impurities. The transport proceeds via  $MoO_2(OH)_{2,g}$ ; cf. Sect. 3.4.2.1. The influence of higher pressure of H<sub>2</sub>O is shown by Expt. 2. At a lower temperature (Expt. 5) a transport effect caused by H<sub>2</sub>O could not be observed.

The iodine transport of  $MoO_2$  is shown by Expts. 3, 4, and 6. In some cases the transport agent  $J_2$  was initially prepared by the reaction of CuJ in a stream of  $O_2$ . Compared with the iodine transport of  $WO_2$  the transport rate with  $MoO_2$  is smaller. Nevertheless fair amounts of  $MoO_2$  can be transported if larger tube diameters and (or) higher temperatures are used.

The chemical transport of  $MoO_2$  obviously proceeds similar to the  $WO_2$  transport via  $MoO_2J_{2,g}$ . This assumption (6) was confirmed by quantitative transport experiments in tubes with a well-defined diffusion path and their thermodynamic discussion (9) (cf. Sect. 3.4.2.2).

For the  $MoO_2$  synthesis, starting from

 $Mo + O_2 \text{ or } Mo + MoO_3 \text{ an addition of transport}$ agent  $(J_2; \text{ see } WO_2)$  and a heating within a temperature gradient  $(1000 \rightarrow 800^{\circ}C)$  is to be recommended. In this way synthesis and chemical transport occur in one and the same experimental process.

 $WO_2$ . Chemical transport of  $WO_2$  with  $J_2$  as a transport agent in a temperature gradient  $1000 \rightarrow 800^{\circ}$ C proceeds by means of the iodide  $WO_2J_{2,g}$ . For experimental details and more information see refs. 8, 10 and 11; see also Sect. 3.4.2.2. Some experiments regarding the synthesis of  $WO_2$  are given in Table II.

If the elements  $W + O_2$  are used, they are combined in a first reaction step to  $WO_2$  within the hot temperature region. The formation of a  $WO_2$  layer on the surface of the tungsten grains slowing down the reaction velocity is prevented by the transport agent (J<sub>2</sub>). Small  $WO_2$  crystals are formed near the source material. During this step the driving force (the concentration gradient) within the hot zone is determined by the stability difference of  $W + O_2$  and  $WO_2$  respectively.

|              | Introduced tran                    | sp. agent             |                         |                      |                               |
|--------------|------------------------------------|-----------------------|-------------------------|----------------------|-------------------------------|
| Expt.<br>No. | P<br>at av. temp.<br>[mg/ml] [atm] |                       | Temperatures<br>[°C]    | Heating<br>time [hr] | Yield transp. Mo<br>[mg]      |
| 1            | 0.69 H₂O                           | 3.37 H <sub>2</sub> O | 700 → 900               | 52                   | 0                             |
| 2            | 1.50 J <sub>2</sub>                | 0.53 J <sub>2</sub>   | <b>710 → 940</b>        | 106                  | 0                             |
| 3            | $1.50 J_2$                         | $0.52 J_2$            | <b>670 ← 940</b>        | 167                  | 0                             |
| 4            | 1.38 J <sub>2</sub>                | 0.50 J <sub>2</sub>   | <b>750 → 950</b>        | 48                   | 17                            |
|              | 0.28 H <sub>2</sub> O              | 1.43 H <sub>2</sub> O |                         |                      |                               |
| 5            | 1.38 J <sub>2</sub>                | 0.48 J <sub>2</sub>   | 700 ← 900               | 42                   | 0                             |
|              | 0.28 H <sub>2</sub> O              | 1.37 H₂O              |                         |                      |                               |
| 6            | 0.51 H <sub>2</sub> O              | 3.19 H <sub>2</sub> O | $1050 \rightarrow 1150$ | 96                   | 0                             |
| 7            | 0.17 H₂O                           | 0.99 H₂O              | 900 ← 1100              | 96                   | 2 mg Mo (+ MoO <sub>2</sub> ) |
| 8            | $3.26 J_2 + 105 mg C^b$            | 1.45 J <sub>2</sub>   | $1050 \rightarrow 1150$ | 96                   | 0                             |
| 9            | $3.20 J_2$                         | 1.42 J₂               | $1050 \rightarrow 1150$ | 96                   | 259                           |
| 10           | 0.25 H <sub>2</sub> O              | 1.51 H₂O              |                         |                      |                               |
|              | 1.30 J <sub>2</sub>                | 0.56 J <sub>2</sub>   | $950 \rightarrow 1150$  | 98                   | 18                            |
| 11           | 0.47 H <sub>2</sub> O              | 2.94 H₂O              |                         |                      |                               |
|              | 3.04 J <sub>2</sub>                | 1.35 J <sub>2</sub>   | $1050 \rightarrow 1150$ | 97                   | 72                            |
| 12           | 0.12 H <sub>2</sub> O              | 0.75 H₂O              |                         |                      |                               |
|              | 4.44 J <sub>2</sub>                | 1.97 J <sub>2</sub>   | $1050 \rightarrow 1150$ | 94                   | 204                           |

TABLE III

CHEMICAL TRANSPORT OF MO<sup>a</sup>

<sup>a</sup> Source material 1.5 g Mo (powder). Dimensions of the quartz ampoule: 17 mm inside diameter, 160 mm in length. The arrow gives the transport direction which has been checked.

<sup>b</sup> Total amount of graphite.

The second (slower) step is the chemical transport of  $WO_2$  into the low temperature region.

In the WO<sub>2</sub> formation starting with W + WO<sub>3</sub> we can distinguish several reaction steps again. First WO<sub>3</sub> must be moved onto the tungsten surface. As to this process we should mention the fact that a powder mixture of W and WO<sub>3</sub> is used so that the distance to be overcome is small. For that reason the process can proceed by means of the small saturation pressure of WO<sub>3</sub>;  $P(W_3O_9) =$  $5 \times 10^{-7}$  atm at 1300 K. Since traces of H<sub>2</sub>O are usually present the WO<sub>3</sub> transport may proceed also via WO<sub>2</sub>(OH)<sub>2, g</sub>.

Instead of transporting  $WO_3$  an oxygen carrier would suffice. This oxygen transfer from  $WO_3$  to W will occur by means of the system  $H_2O/H_2$ established automatically in the presence of water.

The last step is the chemical transport of  $WO_2$ by means of  $J_2$  preventing again the formation of a rate limiting surface layer. These considerations are in agreement with the observations. In some of the experiments, small amounts of a blue material are deposited into the coldest end of the ampoule. Its X-ray diagram shows the pattern of  $W_{18}O_{49}$  and some times of oxide phases with compositions between  $W_{18}O_{49}$  and  $WO_3$ .

2.3. Chemical Transport of the Elements Mo and W

Mo. The similarity of the transport of  $MoO_2$ and  $WO_2$  via  $MoO_2J_{2,g}$  and  $WO_2J_{2,g}$  respectively suggests the Mo-transport by means of  $J_2 + H_2O$ , similar to the W-transport (10) (800  $\rightarrow$  1000°C). Some experiments made in this direction are given in Table III.

Remarks concerning the experiments of Table III: (a) The charging with  $H_2O$  was brought about by thermal decomposition of  $BaCl_2 \cdot 2H_2O$  and condensation of  $H_2O$  in the ampoule. (b) In Expt. 4 the deposition of Mo occurred in form of a mirror. (c) In Expts. 11 and 12 the residue in the low temperature region consists of Mo + MoO<sub>2</sub> (X-ray diagram). (d) In Expt. 12 the deposition of Mo crystals happened not only within the

TABLE IV

| CHEMICAL TRANSPORT | OF | $MoS_2$ | AND | WS <sub>2</sub> " |
|--------------------|----|---------|-----|-------------------|
|--------------------|----|---------|-----|-------------------|

|              |                                         | Introduced              |                            |                  |                        |                     |
|--------------|-----------------------------------------|-------------------------|----------------------------|------------------|------------------------|---------------------|
|              |                                         | Transp                  | agent                      |                  |                        |                     |
| Expt.<br>No. | Solid<br>[mg]                           | [mg/ml]                 | P<br>at av. temp.<br>[atm] | Temp.<br>[°C]    | Heating<br>time<br>[h] | Yield<br>[mg]       |
| 1            | 302 MoS <sub>2</sub>                    | 0                       | 0                          | 700 ← 830        | 360                    | 0                   |
|              |                                         |                         |                            | 850 ← 990        | 312                    | 0                   |
| 2            | 1000 MoS <sub>2</sub> *                 | 0.0225 H <sub>2</sub> O | 0.11 H₂O                   | 700 ← 900        | 96                     | 0                   |
| 3            | 1000 MoS <sub>2</sub> *<br>105 graphite | 1.23 J <sub>2</sub>     | 0.42 J <sub>2</sub>        | <b>670 ← 890</b> | 38                     | 0                   |
| 4            | 302 MoS <sub>2</sub>                    | 3.81 J <sub>2</sub>     | 1.30 J <sub>2</sub>        | <b>750 ← 820</b> | 350                    | 190 MoS             |
| 5            | 1000 MoS <sub>2</sub> *                 | $1.23 J_2$              | $0.42 J_2$                 | 650 ← 900        | 20                     | 165 MoS             |
| 6            | 300 WS <sub>2</sub>                     | 0                       | 0                          | 700 ← 830        | 360                    | 0                   |
|              |                                         |                         |                            | 850 ← 980        | 288                    | 0                   |
| 7            | 1000 WS <sub>2</sub> *                  | 0.020 H <sub>2</sub> O  | 0.10 H <sub>2</sub> O      | 700 ← 900        | 96                     | 14                  |
| 8            | 873 WS <sub>2</sub><br>83 graphite      | 1.20 J <sub>2</sub>     | 0.42 J <sub>2</sub>        | 700 ← 900        | 72                     | 0                   |
| 9            | 1050 WS <sub>2</sub> *<br>145 graphite  | 1.17 J <sub>2</sub>     | 0.41 J <sub>2</sub>        | 700 ← 900        | 450                    | 0                   |
| 10           | 306 WS <sub>2</sub>                     | 5.0 J <sub>2</sub>      | 1.73 J <sub>2</sub>        | 720 - 870        | 720                    | 300 WS <sub>2</sub> |
| 11           | 1003 WS <sub>2</sub> *                  | 1.19 J <sub>2</sub>     | $0.41 J_{2}$               | 700 ← 900        | 40                     | 667 WS2             |

<sup>a</sup> Dimensions of the quartz ampoules: 16 mm inside diameter and 120–170 mm in length. The arrow gives the transport direction which has been checked. The asterisk \* denotes that the ampoule is charged with metal and sulfur in stoichiometric amounts.

hottest region but also in the middle of the ampoule. Table III shows that neither  $H_2O$ (Expts. 1 and 6) nor  $J_2$  (Expts. 2 and 8) alone causes chemical transport of Mo into the hotter zone at the temperatures used. But  $H_2O$  and  $J_2$ together (Expts. 4, 10, 11, and 12) cause a small chemical transport of Mo via  $MoO_2J_{2,g}$  into the hotter zone; see Sect. 3.4.3. At temperatures of  $1050 \rightarrow 1150^{\circ}C$  the small amounts of  $H_2O$  which are always present are sufficient (Expt. 9). If one lowers the  $H_2O$  content by means of graphite (see Sect. 3.3) iodine alone will not cause any transport.

At higher temperatures  $(1200-1500^{\circ}C)$  a remarkable volatilization of Mo and W in a stream of H<sub>2</sub>O + H<sub>2</sub> is observed by equilibrium measurements (12, 13). In this way chemical transport of Mo from the higher to the lower temperature region will be possible (see also Expt. 7).

Recently new investigations have been published (14) concerning the chemical transport of Mo and W in an  $H_2O/H_2$ -atmosphere between different places of filaments of the metals at temperatures about 2500°C.

W. As mentioned above if both J<sub>2</sub> and H<sub>2</sub>O are present, W is transported in a temperature gradient  $800 \rightarrow 1000^{\circ}$ C into the hotter region. Responsible for this behaviour is the exothermic formation of WO<sub>2</sub>J<sub>2,g</sub> (and HJ). For transport experiments see (10).

If H<sub>2</sub>O alone is used as transport agent, W is transported into the lower temperature region; e.g., with ampoules as in Table III, with 0.17 mg H<sub>2</sub>O/ml and 1100 (W)  $\rightarrow$  900°C we observed the deposition of 42 mg W (+WO<sub>2</sub>)/100 hr within the 900°C zone. Iodine alone will not cause any transport of W (10).

# 2.4. Chemical Transport of the Disulfides of $MoS_2$ and $WS_2$

We investigated the influence of the vapour pressure of the disulfides themselves, and the transport effect caused by  $H_2O$ , by  $J_2$ , and by both  $J_2 + H_2O$ ; see Table IV. In some experiments the sulfide as starting material was replaced by a powder mixture of the elements in stoichiometric amounts. The experiments yielded the same results whether or not there was an isothermal (800°C) heating period of ~10 hr to combine the elements before the heating in the temperature gradient.

In each case the products (residue and material transported to the low temperature region) were

characterized by X-ray powder methods as disulfides.

As an experimental result we may register (a) that  $MoS_2$  and  $WS_2$  under the given condition are not volatile themselves (Expts. 1 and 6); (b) that  $H_2O$  alone causes no observable transport of  $MoS_2$  but a small transport of  $WS_2$ (Expts. 2 and 7); (c) that no transport by means of  $J_2$  occurs if by addition of graphite the water content is diminished (Expts. 3, 8, and 9); (d) that the addition of  $J_2$  in the presence of water impurities causes a chemical transport into the lower temperature region (Expts. 4, 5, 10, and 11). Water leads to some extent to the formation of  $H_2S$  observable by its smell.

# 3. Discussion

### 3.1. Thermodynamic Values

The discussion is based on the thermodynamic equilibria involved. Janaf data (15) have been used when available. Additional data are given in Table V.

3.2. Vapour Species Possibly Involved in the Observed Transport Reactions

### 3.2.1. Iodides

So far no conclusive observations have been published concerning gaseous molybdenum- and tungsten iodides. They are indeed undetectable during the thermal decomposition (thermobalance, mass spectrometer) of  $Mo_6 J_{12}$  and  $W_6 J_{12}$ (see Expts. A and B). On the other hand observations concerning the synthesis of MoJ<sub>3</sub> and  $WJ_3$  from the elements (see Expts. C, D) achieved at low temperatures and with high  $J_2$  pressure  $(WJ_3)$ , where the products are deposited in the low temperature zone of an ampoule can be explained by migration via gaseous iodides. However, such an interpretation is not conclusive. By participation of small H<sub>2</sub>O pressures, certainly being present, a chemical transport of  $MJ_{3,s}$  via  $MO_2J_{2,g}$  (M = Mo, W) may be possible, e.g.,

 $MJ_{3,s} + 1.5J_{2,g} + 2H_2O_{g} = MO_2J_{2,g} + 4HJ_{g}$ 

Because of the present lack of data a decision between both possibilities can not be taken. Be that as it may, discussing the transport experiments with the metals, the dioxides and the sulfides at higher temperatures, gaseous iodides of Mo and W need not be taken into consideration.

|                                   |        | Те     | emperature, | К      |        |       |
|-----------------------------------|--------|--------|-------------|--------|--------|-------|
| Substance                         | 900    | 1000   | 1100        | 1200   | 1300   | Notes |
| M0309.8                           | 83.495 | 72.666 | 63.824      | 56.467 | 50.253 | a     |
| MoO <sub>2</sub> J <sub>2,g</sub> | 20.914 | 18.126 | 15.854      | 13.969 | 12.380 | b     |
| $WO_2J_{2,8}$                     | 22.623 | 19.795 | 17.490      | 15.574 |        | с     |
| MoS <sub>2.s</sub>                |        | 11.095 |             | 7.886  |        | d     |
| WS <sub>2,s</sub>                 | 11.349 | 9.397  | 7.800       | 6.469  |        | е     |

Log Kp,  $_{f(atm)}$ . Data for Formation from the Elements. Log Kp,  $_{f} \equiv 0$  for Mo, $_{s}$ ; W, $_{s}$ ; S<sub>2</sub>, $_{g}$ , J<sub>2</sub>, $_{g}$  at the Temperatures Used

<sup>*a*</sup>  $\Delta H_{900}(Mo_3O_9, subl.) = 80.5 \text{ kcal} (16); \text{ fef}(W_3O_{9,g}) (15).$ 

<sup>b</sup>  $MoO_2J_2$  data from (9) in combination with  $MoO_2$  data (15).

<sup>c</sup>  $WO_2J_2$  data from (17) in combination with  $WO_2$  data (15).

<sup>*d*</sup> MoS<sub>2</sub> data are taken from (18). They agree well with recent  $\Delta H$  (19) and Cp (20) values.

<sup>e</sup> WS<sub>2</sub> data are taken from equilibrium measurements (21). log Kp, f data calculated from  $\Delta$ H<sup>0</sup><sub>298</sub>, S<sup>0</sup><sub>298</sub> (22, 15) and Cp; Cp(MoS<sub>2</sub>) from (20) are smaller (-1.0), and log Kp, f-data from (23) are higher (+0.5).

*Expt. A.* If the "dibromide"  $Mo_6Br_{12}$  is heated up to 1000°C on a thermobalance under 1 atm argon (24), about 50–60% of Mo are volatilized as bromides. The residue is Mo metal. The main species observed when  $Mo_6Br_{12}$  is decomposed in the vacuum of a mass spectrometer are  $Br_2$  and  $MoBr_4$  ( $Mo_6Br_{12}$ ; up to 750°C; 50 eV) (25).

If the same experiments are made with  $Mo_6J_{12}$ as starting material the decomposition leads quantitatively to the formation of  $J_2$  and Mo (thermobalance). No Mo-containing species are observed in the mass spectrometer ( $Mo_6J_{12}$ ; 20-430°C; 70 eV).

*Expt. B.* In decomposition experiments with  $W_6Br_{12}$  and  $W_6J_{12}$  (thermobalance) (24); mass spectrometer (25) (70 eV) similar to the experiments with Mo compounds, we observed the volatilization of W bromides, but gaseous iodides could not be detected.

*Expt. C.* An ampoule (2.5 cm in diameter, 16 cm in length) is charged with 0.96 g Mo (powder) and 4.5 g J<sub>2</sub>. After heating the ampoule for 24 hr in the gradient  $500 \rightarrow 250^{\circ}$ C one finds MoJ<sub>3</sub> crystals in the 250°C zone in a good yield (26), see also (27).

*Expt.* D. An ampoule is charged with W powder of high reactivity and an excess of  $J_2$ . The ampoule is situated in inclined position in a temperature gradient of 500/350°C in such a manner, that W in the lower position has 500°C and the upper end empty at the beginning has  $350^{\circ}$ C. During the heating process  $J_2$  is continually condensed in the  $350^{\circ}$ C region and flows down to the  $500^{\circ}$ C region, where it vaporizes again. The vapour pressure of liquid  $J_2$  at  $350^{\circ}$ C equals 18.5 atm. After a reaction time of several days one finds grey needles of  $WJ_3$  in the  $350^{\circ}$ C zone.

#### 3.2.2. Oxides and Oxide Hydroxides

Molybdenum and tungsten form gaseous oxides and oxide hydroxides:

$$(MoO_3)_n$$
;  $n = 1, 2, 3, 4, 5$ ; (15) (16)  
MoO<sub>2</sub>(OH)<sub>2</sub> (15)  
(WO<sub>3</sub>)<sub>n</sub>;  $n = 1, 2, 3, 4$ ; (15) WO<sub>2</sub>(OH)<sub>2</sub> (15)

### 3.2.3. Oxide Iodides

 $MoO_2J_2$  involved as a molecule in the chemical transport of  $MoO_2$  with  $J_2$  has been suggested (6) by analogy with  $WO_2J_2$ . This assumption has been confirmed by quantitative transport experiments (9).

 $WO_2J_{2,g}$  has been observed by measuring the equilibrium established by reaction of  $WO_{2,s}$  and  $J_{2,g}$  (17, 30), and by mass spectroscopy (30, 31).  $WO_2J_2$  has also been prepared as a crystalline solid (32).

### 3.2.4. Sulfide Iodides

Some gaseous sulfide chlorides and bromides of heavy transition elements are known (X = Cl, Br):

NbSX<sub>3</sub> (33)TaSCl<sub>3</sub> (33)

NbSCl<sub>3</sub> and NbSBr<sub>3</sub> are observed in a mass spectrometer when the solides NbS<sub>2</sub>Cl<sub>2</sub> and NbS<sub>2</sub>Br<sub>2</sub> are decomposed. On the other hand during the thermal decomposition of solid NbS<sub>2</sub>J<sub>2</sub> iodine was liberated and no sulfide iodide could be detected (33). A mixed oxide-sulfidechloride, the molecule WOSCl<sub>2</sub> is also reported (35).

# 3.3. Equilibria Involved in the Presence of Graphite

The addition of graphite has been proved to be very useful to decrease the water content of a gasphase to a low level. This was observed for the first time by Dettingmeijer (10) in connection with the chemical transport of tungsten. The effect is caused by the endothermic reaction (1)

$$C_{,s} + H_2O = CO + H_2.$$
 (1)

An initial  $H_2O$  pressure of 1 [atm  $\cdot 10^2$ ] by reaction with graphite is diminished to 0.004, 0.0009, 0.0003, 0.00009 [atm  $\cdot 10^2$ ] at 1000, 1100, 1200, 1300 K, respectively, when the equilibrium is established (calculation with data given by (15)).

Equilibrium (1) could be a transport system for carbon. But in fact this is not the case: At the highest temperatures used (1300 K) the equilibrium position is too far to the right, and at lower temperatures, the formation of C from CO is slow because of kinetic 1 asons.

In transport reactions of sulfides  $S_2$  is one of the constituents of the gasphase. The addition of graphite leads to the formation of  $CS_2$ ,

$$C_{,s} + S_{2,g} = CS_{2,g}.$$
 (2)

For this reaction the following equilibrium constants are known (15):

In our transport experiments of sulfides with iodine if graphite is used it is situated in the higher temperature region. By equilibration of the graphite with the small  $S_2$ -pressure existing in the ampoule in agreement with the given Kp values a small  $CS_2$  pressure is established. It is to be expected that this  $CS_2$  pressure will be of an unimportant influence only. Experiments in which the  $H_2O$  content is lowered by the addition of graphite will not behave noticeably different from those without graphite, and the same very low equilibrium pressure of  $H_2O$ .

# 3.4. Equilibria Responsible for the Observed Transport Effects

# 3.4.1. General Remarks Concerning the Transport Rate

Usually the transport rate is determined by diffusion between spaces 2 and 1 in which a thermodynamic equilibrium between solid and gas is established. This leads to the semi-empirical formula (37) for the amount of transported material

$$n = \frac{\Delta P}{\sum P} \frac{T^{0.8} \cdot q \cdot t'}{s} 1.8 \times 10^{-4} \text{ [mole]}$$

which includes an average diffusion coefficient of 0.1 [cm<sup>2</sup> sec<sup>-1</sup>] at 1 atm and 273 K, the difference of the partial pressures  $\Delta P = P_2 - P_1$  of a gas species related to the transported solid, the average temperature of the diffusion path T[K], the cross section q [cm<sup>2</sup>] of the ampoule, the length of the diffusion path [cm] between source and deposit, and the heating time t' [hr]. Under given experimental conditions the diffusion is proportional to the difference of the equilibrium pressures of species involved  $\Delta P$ , and inversely proportional to the total pressure  $\sum P$ . The value of  $\Delta P / \sum P$  gives a first, rough approximation of the transport rate. For average experimental conditions (T = 1000 K, q = 2.7 cm<sup>2</sup>, s = 10 cm, t' = 100 hr, molecular weight of transported solid = 100) the lower suitable limit of  $\Delta P / \sum P$ equals  $10^{-5}$ , which gives a transport rate as low as about 1 mg/100 hr(6). Reactions for which the calculated  $\Delta P / \sum P$  is  $< 10^{-5}$  may be neglected.

The simple model using the same (average) diffusion coefficient for all the gas species involved introduces the assumption that diffusion and thermodiffusion will not cause any gas separation. This however is not correct with regard to our system containing light ( $H_2$ ) and very heavy molecules ( $J_2$ ,  $WO_2J_2$ ). Therefore, the results of the thermodynamic calculations should be considered only in a semiquantitative sense,

although this manner leads to very valuable information.

The model can also be understood in the following way: We take a volume element of equilibrium gas from region 1 and transfer it to region 2, where new equilibration with deposition of a solid occurs. The total pressure during this process is kept constant. The change of the number of gaseous molecules, mainly caused by the dissociation of  $J_2$  has been neglected. This effect is unimportant in the systems involved in our investigation. For further information see (37).

## 3.4.2. Transport of the Oxides

3.4.2.1. The influence of water. The elements under investigation form volatile oxides and oxide hydroxides. Therefore the possibility must be discussed, that small pressures of water vapour may act as a transport agent.

 $MoO_2/H_2O$ . We assume that under the experimental conditions (temperature, charging with  $MoO_2$  and small  $H_2O$  pressures)  $MoO_2$  is the only stable solid. The endothermic equilibrium (3) is of importance.

$$MoO_{2,s} + 2H_2O_{g} = MoO_2(OH)_{2,s} + H_2.$$
 (3)

On the other hand the formation of  $Mo_3O_{9,g}$  [eq. (4)] and generally  $(MoO_3)_{n,g}$  may be neglected,

$$3M_0O_2(OH)_{2,g} = M_0O_3O_{9,g} + 3H_2O_g.$$
 (4)

Data for the equilibria (3 and 4) are given in Table VI.

The equilibrium (3) is independent of pressure. When the ampoule is charged with MoO<sub>2</sub> and H<sub>2</sub>O then  $P(MoO_2(OH)_2)$  increases proportionally to  $P(H_2O)$ . Proceeding to Eq. (4) the influence of changes in  $P(H_2O)$  and  $P(MoO_2(OH)_2)$  compensate each other. Therefore,  $P(Mo_3O_9)$  is independent of the charge  $(MoO_2 + H_2O)$ . Table VI shows, that the total pressure  $\sum P$  is about  $P(H_2O)$ . For chemical transport of MoO<sub>2</sub>, 1300  $\rightarrow$  1100 K one gets

$$\frac{\Delta P[MoO_2(OH)_2]}{\sum P} = \frac{P[MoO_2(OH)_2]_{1300} - P[MoO_2(OH)_2]_{1100}}{\sum P} = \frac{101}{\sum P}$$

 $181 \times 10^{-5}$ .

TABLE VI

Equilibrium Pressures above  $MoO_{2,s}$ ;  $P(H_2O) \equiv 1 \cdot 10^{-2}$  atm;  $P(H_2) = P(MoO_2(OH)_2)$ 

| T<br>[K] | Log K <sub>3</sub> | Log K <sub>4</sub> | $P[MoO_2(OH)_2]$ [atm · 10 <sup>7</sup> ] | <i>P</i> (Mo <sub>3</sub> O <sub>9</sub> )<br>[atm · 10 <sup>7</sup> ] |
|----------|--------------------|--------------------|-------------------------------------------|------------------------------------------------------------------------|
| 900      | -9.445             | 3.152              | 1.9                                       | 0.0001                                                                 |
| 1000     | 8.119              | 2.751              | 8.7                                       | 0.004                                                                  |
| 1100     | 7.029              | 2.411              | 30.6                                      | 0.07                                                                   |
| 1200     | -6.120             | 2.116              | 87.1                                      | 0.9                                                                    |
| 1300     | -5.349             | 1.860              | 211.6                                     | 7                                                                      |
|          |                    |                    |                                           |                                                                        |

This value holds generally because of the pressure independence of reaction (3). It follows from  $\Delta P / \sum P$  and Sect. 3.4.1. that at higher temperatures (e.g., 1300  $\rightarrow$  1100 K) a chemical transport of MoO<sub>2</sub> by means of H<sub>2</sub>O via MoO<sub>2</sub>(OH)<sub>2, g</sub> is to be expected. On the other hand at lower temperatures (e.g., 1000  $\rightarrow$  900 K) the transport effect must be very small next to the limit of observation. These conclusions agree well with the experimental results (see Sect. 2.2., Table I, Expts. 2 and 5).

In the presence of small  $H_2O$  pressures the addition of foreign gases, (e.g., increasing the  $\sum P$  by a factor of 100 by addition of  $J_2$ ) will considerably diminish the MoO<sub>2</sub> transport via MoO<sub>2</sub>(OH)<sub>2, g</sub>.

 $WO_2/H_2O$ . Heating an ampoule charged with WO<sub>2</sub> and H<sub>2</sub>O will lead to some extent to the formation of WO<sub>2.72,s</sub> and H<sub>2</sub>, see Eq. (5).

$$WO_{2,s} + 0.72H_2O_{,g} = WO_{2.72,s} + 0.72H_2.$$
 (5)

Our primary interest is to get an impression of the influence of small  $H_2O$  pressures that are difficult to be excluded in transport experiments with  $WO_2$  and  $J_2$  as a transport agent. Besides Eq. (5) we take into account Eqs. (6 and 7); see Table VII.

$$WO_{2,s} + 2H_2O_{g} = WO_2(OH)_{2,g} + H_2$$
 (6)

$$3WO_2(OH)_{2,g} = W_3O_{9,g} + 3H_2O_{,g}.$$
 (7)

The calculation (Table VII) shows that  $P(W_3O_9)$  is without any importance.

If WO<sub>2,s</sub> has to coexist, then  $P(WO_2(OH)_2)$  has the highest possible value above the solids WO<sub>2</sub> and WO<sub>2.72</sub>. Let us assume that an ampoule is charged with WO<sub>2</sub> and H<sub>2</sub>O in such a manner, that WO<sub>2</sub> is partially situated at both ends of the ampoule. Table VII shows that if the ampoule is heated in a temperature gradient, some part of

#### TABLE VII

| Т<br>[K] | Log K <sub>5</sub> | Log K <sub>6</sub> | Log K <sub>7</sub> | $P(H_2)$<br>[atm·10 <sup>2</sup> ] | $P(WO_2(OH)_2)$ [atm $\cdot 10^5$ ] | P(W <sub>3</sub> O <sub>9</sub> )<br>[atm] | <i>ΣΡ</i><br>[atm] |
|----------|--------------------|--------------------|--------------------|------------------------------------|-------------------------------------|--------------------------------------------|--------------------|
| 900      | -0.0186            | -6.595             | 2.558              | 0.942                              | 0.000270                            | 1 × 10 <sup>-17</sup>                      | 0.0194             |
| 1000     | -0.0816            | -5.573             | 2.327              | 0.770                              | 0.00347                             | $1 \times 10^{-14}$                        | 0.0177             |
| 1100     | -0.1288            | -4.731             | 2.124              | 0.662                              | 0.0281                              | $3 \times 10^{-12}$                        | 0.0166             |
| 1200     | -0.1643            | -4.025             | 1.943              | 0.591                              | 0.160                               | $4 \times 10^{-10}$                        | 0.0159             |
| 1300     | -0.1931            | -3.424             | 1.777              | 0.539                              | 0.699                               | $2 \times 10^{-8}$                         | 0.0154             |

EQUILIBRIUM PRESSURES ABOVE WO<sub>2.8</sub> + WO<sub>2.72.8</sub>;  $P(H_2O) \equiv 1 \times 10^{-2}$  atm

 $WO_2$  will be transformed into  $WO_{2.72}$  after some time in the low temperature region and equilibrium (5) will be established.  $WO_2$  in the hot region will not be changed.

This is the situation which we have to consider in order to get an impression of the WO<sub>2</sub> transport via WO<sub>2</sub>(OH)<sub>2, g</sub>. As an example we ask for a chemical transport in the gradient  $1300 \rightarrow 1100$ K. For the 1100°C-region we find the gas composition in Table VII. Taking the same pressures of H<sub>2</sub>O and H<sub>2</sub> and going to the 1300 K region by means of  $K_6$  we calculate  $P[WO_2(OH)_2]$  $= 0.569 \times 10^{-5}$  atm. Thus

$$\frac{\Delta P(WO_2(OH)_2)}{\sum P} = \frac{(0.569 - 0.028) \times 10^{-5}}{0.0166} = 33 \times 10^{-5}$$

This value shows that in this temperature range a small WO<sub>2</sub> transport is to be expected.

As in the case of MoO<sub>2</sub>, the dioxide transport by means of small H<sub>2</sub>O pressures will be of smaller influence, if larger amounts of other gases, e.g.,  $J_2$  are added, thereby increasing  $\sum P$ .

3.4.2.2. Iodine as transport agent for MoO<sub>2</sub> and  $WO_2$ . The chemical transport of MoO<sub>2</sub> and WO<sub>2</sub> proceeds by means of the reversible reactions (8 and 9), respectively,

$$MoO_{2,s} + J_{2,g} = MoO_2J_{2,g}$$
 (8)

$$WO_{2,s} + J_{2,g} = WO_2 J_{2,g}.$$
 (9)

Both reactions are endothermic. The transport of the dioxides, therefore, goes into the lowtemperature region. Both proceed without change of the number of gaseous molecules, which means, that the value of  $\Delta P / \sum P$  is independent of pressure. These conclusions are modified to some extent by the partial dissociation of  $J_2$  into atoms. The composition of the gasphase and the

| Calculation for the Systems $MoO_2/J_2$ and $WO_2/J_2^a$ |          |                                |                |                |                                |                                    |  |  |  |
|----------------------------------------------------------|----------|--------------------------------|----------------|----------------|--------------------------------|------------------------------------|--|--|--|
|                                                          |          | Log K                          |                | P [atm · 10    | 3]                             |                                    |  |  |  |
| System<br>ΣP[atm]                                        | T<br>[K] | for Eq. (8) -<br>and (9) resp. | J <sub>2</sub> | J <sub>1</sub> | MO <sub>2</sub> J <sub>2</sub> | $(\Delta P   \Sigma P) \cdot 10^5$ |  |  |  |
| MoO <sub>2</sub> /J <sub>2</sub>                         | 1273     | -2.121                         | 213.3          | 185.1          | 1.614)                         | 290                                |  |  |  |
| 0.400                                                    | 1073     | -2.882                         | 339.7          | 59.9           | 0.446)                         |                                    |  |  |  |
| WO <sub>2</sub> /J <sub>2</sub>                          | 1273     | -0.427                         | 170.7          | 165.6          | 63.8)                          | 10300                              |  |  |  |
| 0.400                                                    | 1073     | 1.150                          | 319.2          | 58.1           | 22.6)                          |                                    |  |  |  |
| MoO <sub>2</sub> /J <sub>2</sub>                         | 1273     | -2.121                         | 667.3          | 327.5          | 5.05)                          | 390                                |  |  |  |
| 1.000                                                    | 1073     | -2.882                         | 901.1          | 97.6           | 1.18)                          |                                    |  |  |  |
| WO <sub>2</sub> /J <sub>2</sub>                          | 1273     | -0.427                         | 517.9          | 288.5          | 193.7)                         | 13400                              |  |  |  |
| 1.000                                                    | 1073     | -1.150                         | 845.6          | 94.5           | 59.9)                          |                                    |  |  |  |

TABLE VIII

-

<sup>a</sup> Data for  $MoO_2/J_2$  see (9), data for  $WO_2/J_2$  see (17).

informative values of log K and  $\Delta P / \sum P$  are given in Table VIII.

From the log K and  $\Delta P / \sum P$  values one can see, that the transport rate for MoO<sub>2</sub> must be small, compared with that for WO<sub>2</sub>. But even with MoO<sub>2</sub> the transport rate should be large enough for preparative purposes. This is in agreement with experimental results (see Table I, Expts. 3 and 4).

# 3.4.3. Transport of the Metals Mo and W

3.4.3.1. The metals and water. If an ampoule charged with Mo or W and  $H_2O$  is heated to about 1000°C, this leads to the partial conversion of the metal into its dioxide, Eqs. (10 and 11).

$$0.5 Mo_{2,s} + H_2O_{g} = 0.5 MoO_{2,s} + H_2$$
 (10)

$$0.5W + H_2O_{,g} = 0.5WO_{2,s} + H_2.$$
 (11)

The hydrogen, produced in this way influences the equilibrium position of the reactions (12 and 13)

$$Mo_{s} + 4H_2O_{g} = MoO_2(OH)_{2,g} + 3H_2$$
 (12)

$$W_{s} + 4H_2O_{g} = WO_2(OH)_{2,g} + 3H_2.$$
 (13)

The formation of  $(MoO_3)_{n,g}$  and  $(WO_3)_{n,g}$  can be neglected. Examples for equilibrium pressures are given in Table IX.

From the data given in Table IX we conclude: (a) Starting with an ampoule containing Mo (or W) at both ends and  $H_2O$  and heating it in a temperature gradient (e.g., 1200/1400 K) some part of the metal in the low temperature region will be transformed into its dioxide (Eqs. 10 and

### TABLE IX

Equilibrium Pressures above  $Mo + MoO_{2, s}$  and  $W + WO_{2, s}$  Respectively.  $\Sigma P = 1$  atm

| т    |              |                | P[atr | n]                                |
|------|--------------|----------------|-------|-----------------------------------|
| [K]  | Solids       | H <sub>2</sub> | H₂O   | MO <sub>2</sub> (OH) <sub>2</sub> |
| 1200 | $Mo + MoO_2$ | 0.651          | 0.349 | 1.41 × 10 <sup>-7</sup>           |
| 1300 | $Mo + MoO_2$ | 0.582          | 0.418 | $1.35 \times 10^{-6}$             |
| 1400 | $Mo + MoO_2$ | 0.524          | 0.476 | $8.82 \times 10^{-6}$             |
| 1200 | $W + WO_2$   | 0.624          | 0.376 | $2.13 \times 10^{-5}$             |
| 1300 | $W + WO_2$   | 0.551          | 0.449 | 1.38 × 10 <sup>-4</sup>           |
| 1400 | $W + WO_{1}$ | 0.489          | 0.511 | $6.60 \times 10^{-4}$             |

11). (b) With a total pressure of 1 atm the  $MO_2(OH)_2$  pressures of Table IX are the highest possible. If the formation of a solid dioxide in the low temperature region must be avoided, a higher quotient  $H_2/H_2O$  has to be used, yielding a smaller  $P(MO_2(OH)_2)$ . (c) Finally Table IX, remembering the importance of  $\Delta P / \sum P$  shows, that the endothermic chemical transport of Mo and W via  $MO_2(OH)_{2,g}$  and  $WO_2(OH)_{2,g}$  respectively, is small with regard to W and near the limit of observation with regard to Mo within the temperature range under investigation; (see Expt. 7 in Table III). Changing to higher temperatures the transport rate clearly becomes larger.

3.4.3.2. The metals, iodine and water. With iodine alone one can not expect chemical transport of Mo and W because of the very low stability of the gaseous iodides, (see Sect. 3.2.1.). This is confirmed by the negative result of experiments using  $J_2$  as a transport agent in the absence of H<sub>2</sub>O (Table III, Expt. 8 (10). H<sub>2</sub>O alone may produce small transport effects, expecially with W. But the transport reactions [Eqs. (12 and 13)] are endothermic, thus causing a chemical transport into the low temperature region.  $J_2 + H_2O$  together produce chemical transport of Mo and W by means of exothermic processes, transporting the metals into the hot zone. For this process especially that of W, traces of water (which can be removed by addition of graphite) are sufficient. The thermodynamic discussion in (10) for the W-transport taking into account the species  $J_1$ ,  $J_2$ , HJ,  $H_2$ ,  $H_2O$ ,  $WO_2(OH)_2$ ,  $WO_2J_2$  leads to the prevailing reaction Eq. (14).

$$W_{,s} + 2H_2O_{,g} + 3J_{2,g} = WO_2J_{2,g} + 4HJ$$
 (14)

The discussion of molybdenum transport by iodine and water using the similar species as in the tungsten transport leads to Eqs. (15–18).

$$0.5Mo_{s} + H_2O_{s} = 0.5MoO_{2,s} + H_2$$
 (15)

$$Mo_{s} + 4H_2O_{g} = MoO_2(OH)_{2,g} + 3H_2$$
 (16)

$$Mo_{,s} + 2H_2O_{,g} + 3J_{2,g} = MoO_2J_{2,g} + 4HJ$$
 (17)

$$2\mathrm{H}\mathrm{J}=\mathrm{J}_{2}+\mathrm{H}_{2} \tag{18}$$

$$\mathbf{J}_2 = 2\mathbf{J}_1. \tag{19}$$

If an ampoule charged with Mo,  $H_2O$ , and  $J_2$  is heated within a temperature gradient, e.g., 1300  $\rightarrow$  1400 K with the starting molybdenum in

|--|

EQUILIBRIUM PRESSURES RELATED TO TRANSPORT OF MO"

| <i>T</i> [K] | Solid                 | H₂O     | MoO <sub>2</sub> (C | )H)2  | $MoO_2J_2$               | $J_2$                 | $J_1$  | HJ     |
|--------------|-----------------------|---------|---------------------|-------|--------------------------|-----------------------|--------|--------|
| 1300         | Mo + MoO <sub>2</sub> | 0.05446 | 1.75 × 1            | 0-7   | 10.03 × 10 <sup>-3</sup> | 1.0892                | 0.4870 | 1.2840 |
| 1400         | Мо                    | 0.05480 | 3.59 × 1            | 0-7   | $8.10\times10^{-3}$      | 0.9145                | 0.7457 | 1.1915 |
|              | H <sub>2</sub>        | ΣΡ      | H/O                 | J/O   | J/H                      | $\Delta P   \Sigma P$ |        |        |
|              | 0.07586               | 3.000   | 20.73               | 53.27 | 2.570                    | <i>c</i> 10-5         |        |        |
|              | 0.08531               | 3.000   | 20.73               | 53.27 | 2.570                    | 64 × 10 °             |        |        |

<sup>a</sup> Ampoule charged with Mo + H<sub>2</sub>O + J<sub>2</sub>. P in atm.;  $\Delta P = P(MoO_2J_2)_{1300} - P(MoO_2J_2)_{1400}$ .

the 1300 K region some part of molybdenum is oxidized until the equilibrium (15) is established. MoO<sub>2</sub> formed in this way remains on further heating in the low temperature region  $(T_1)$ . Furthermore, at  $T_1$  the equilibria (16–19) are established. Taking a volume element of 1300 K equilibrium gas and transferring it into the 1400 K region  $(T_2)$  (keeping the total pressure constant) causes a deposition of Mo, whilst the new equilibrium positions (Eqs. 16–19) are established. This means molybdenum transport from the 1300 into the 1400 K zone.

The result of a corresponding calculation for  $\sum P = 3$  atm and  $J_2/H_2O$  (initial) = J/H (end) = 2.570, suitable to be compared with one of the experiments (Table III, Expt. 12), is given in Table X.

Table X shows that the Mo transport proceeds via  $MoO_2J_2$ , whereas  $MoO_2(OH)_2$  may be neglected. Furthermore from the temperature dependence of  $P(MoO_2J_2)$  follows that the transport proceeds into the high temperature region. Finally  $\Delta P(MoO_2J_2)/\sum P$  tells us that the transport rate will be small. This thermodynamic expectation agrees with the experimental results (Table III).

### 3.4.4. Transport of the Sulfides $MoS_2$ and $WS_2$

In the introduction the fact was mentioned that the chemical transport of  $MoS_2$ ,  $WS_2$  and related compounds by means of iodine have been described earlier. The main reason for our investigation was to find the gas species involved. The transport via the gaseous iodides can not proceed because of their instability. The transport via sulfide iodides is to be excluded because it can not be prevented by addition of graphite as it is actually the case (see Table IV). Two possibilities remain: a transport via the known oxide iodides  $MO_2J_2$  as with the metals and the dioxides, or (less probable) a transport via unknown gaseous sulfide-oxide iodides. To arrive at a decision between these two possibilities, the following thermodynamic calculation was made.

We checked whether the observed transport of  $MoS_2$  and  $WS_2$  can be explained quantitatively by a formation of the gaseous oxide iodides  $MoO_2J_2$  and  $WO_2J_2$ . In this calculation the reactions (20)–(24) have to be taken into consideration; all species with the exception of  $MoS_2$  and  $WS_2$  being gases.

$$MoS_{2,s} + 2H_2O + 3J_2 = MoO_2J_2 + 4HJ + S_2$$
(20a)

$$WS_{2,s} + 2H_2O + 3J_2 = WO_2J_2 + 4HJ + S_2$$
(20b)

$$2HJ = J_2 + H_2 \tag{21}$$

$$2H_2 + S_2 = 2H_2S$$
 (22)

$$4H_2O + S_2 = 2SO_2 + 4H_2$$
 (23)

$$\mathbf{J}_2 = 2\mathbf{J}_1. \tag{24}$$

The calculation of the partial pressures of 9 gas species requires 9 conditions. These are 5 equilibria (20-24), the total pressure  $\sum P$ , and (charging the ampoule with MS<sub>2</sub>, J<sub>2</sub>, and H<sub>2</sub>O) the 3 conditions S/M = 2; H/O = 2; J/O corresponding the charge, where S, M, H, O, J stand for the total contents of the gas phase.

The results are given in Tables XI and XII and Figs. 1 and 2. The general picture is the same for both  $MoS_2$  and  $WS_2$  (Figs. 1 and 2): Keeping the total pressure constant, the curve showing the



dependence of  $P(MO_2J_2)$  on the J/O ratio passes a maximum near J/O  $\cong$  2.

For the sake of simplification let us assume that the equilibria (21–24) could be neglected, so that the situation would be determined only by the reaction (20). In such a case the  $P(MO_2J_2)$ maximum will be reached if the ratio of the equilibrium pressures  $J_2/H_2O$  equals the ratio of the corresponding stoichiometric coefficients of Eq. (20) that is 3/2 = 1.5. In fact the systems under investigation are much more complicated. A large part of sulfur is transformed into SO<sub>2</sub> (see Tables XI and XII), so that another "main equation" can be written [Eq. (27)],

$$MS_{2,s} + 6H_2O + 3J_2 = MO_2J_2 + 4HJ + 2 SO_2 + 4H_2$$
 (25)  
having a  $J_2/H_2O$  ratio of  $3/6 = 0.5$ .



The maximum value on the J/O scale of Figs. 1 and 2, taking into consideration all the equilibria involved is at about J/O = 2, corresponding to the ratio of the equilibrium pressures  $J_2/H_2O \sim 0.8$ and therefore within the limits (0.5–1.5) of the simplified considerations given above.

The temperature dependence of the  $P(MO_2J_2)$ maximum position is small. Therefore, in the same position on the J/O scale we find the maximum value of  $\Delta P = P(MO_2J_2)_{T_2} - P(MO_2J_2)_{T_1}$ , corresponding to the maximum transport rate.

System  $MoS_2/H_2O/J_2^a$ *T*[K] J/O H<sub>2</sub>O  $J_2$  $MoO_2J_2$ HJ  $S_2$ H<sub>2</sub>S  $H_2$ SO<sub>2</sub>  $J_1$ 1000 8.537 E-2 4.268 E-1 3.492 E-3 4.139 E-2 3.782 E-6 8.82 1.379 E-4 3.796 E-5 6.972 E-3 3.574 E-2 1000 15.87 4.721 E-2 4.721 E-1 2.868 E-3 3.429 E-2 4.047 E-6 8.556 E-5 2.437 E-5 5.731 E-3 3.759 E-2 2.326 E-3 1000 27.57 2.509 E-2 5.018 E-1 2.732 E-2 4.195 E-6 5.112 E-5 1.482 E-5 4.614 E-3 3.875 E-2 1000 46.69 1.302 E-2 5.206 E-1 1.780 E-3 2.148 E-2 4.320 E-6 3.044 E-5 8.955 E-6 3.555 E-3 3.947 E-2 1000 61.92 8.805 E-3 5.283 E-1 1.543 E-3 1.846 E-2 4.362 E-6 2.217 E-5 6.555 E-6 3.082 E-3 3.976 E-2 1000 75.27 6.656 E-3 5.325 E-1 1.389 E-3 1.658 E-2 4.359 E-6 1.774 E-5 5.242 E-6 2.751 E-3 3.991 E-2 1000 87.14 5.355 E-3 5.355 E-1 1.273 E-3 1.524 E-2 4.381 E-6 1.491 E-5 4.417 E-6 2.526 E-3 4.003 E-2 1200 8.69 6.188 E-2 3.094 E-1 5.913 E-3 6.731 E-2 8.861 E-5 6.602 E-4 1.437 E-4 1.155 E-2 1.430 E-1 1200 14.36 3.438 E-2 3.438 E-1 4.843 E-3 5.611 E-2 9.493 E-5 4.128 E-4 9.299 E-5 9.439 E-3 1.507 E-1 1200 22.91 1.842 E-2 3.684 E-1 3.905 E-3 4.521 E-2 9.868 E-5 2.501 E-4 5.744 E-5 7.527 E-3 1.560 E-1 1200 35.17 9.642 E-3 3.857 E-1 3.091 E-3 3.565 E-2 1.012 E-4 1.486 E-4 3.457 E-5 5.916 E-3 1.596 E-1 1200 44.38 6.554 E-3 3.933 E-1 2.675 E-3 3.081 E-2 1.028 E-4 1.088 E-4 2.551 E-5 5.134 E-3 1.612 E-1 1200 52.25 4.972 E-3 3.978 E-1 2.401 E-3 2.778 E-2 1.033 E-4 8.743 E-5 2.054 E-5 4.589 E-3 1.621 E-1 1200 58.95 4.009 E-3 4.009 E-1 2.213 E-3 2.558 E-2 1.036 E-4 7.359 E-5 1.732 E-5 4.217 E-3 1.627 E-1 1200 84.28 2.043 E-3 4.086 E-1 1.714 E-3 1.973 E-2 1.040 E-4 4.294 E-5 1.013 E-5 3.225 E-3 1.643 E-1

TABLE XI

<sup>*a*</sup> *P* in atm;  $\Sigma P \equiv 0.600$  atm; S/Mo  $\equiv 2.00$ ; H/O  $\equiv 2.00$ .

SYSTEM WS<sub>2</sub>/H<sub>2</sub>O/J<sub>2</sub><sup>a</sup>

| <i>T</i> [K] | J/O   | H₂O       | J <sub>2</sub> | WO <sub>2</sub> J <sub>2</sub> | HJ        | S <sub>2</sub> | H <sub>2</sub> | H₂S       | SO <sub>2</sub> | J <sub>1</sub> |
|--------------|-------|-----------|----------------|--------------------------------|-----------|----------------|----------------|-----------|-----------------|----------------|
| 1000         | 7.97  | 8.013 E-2 | 4.007 E-1      | 6.524 E-3                      | 6.512 E-2 | 5.603 E-4      | 3.637 E-4      | 1.219 E-3 | 1.075 E-2       | 3.462 E-2      |
| 1000         | 13.62 | 4.481 E-2 | 4.481 E-1      | 5.427 E-3                      | 5.456 E-2 | 5.982 E-4      | 2.282 E-4      | 7.902 E-4 | 8.818 E-3       | 3.662 E-2      |
| 1000         | 22.59 | 2.406 E-2 | 4.812 E-1      | 4.327 E-3                      | 4.419 E-2 | 6.225 E-4      | 1.394 E-4      | 4.925 E-4 | 6.950 E-3       | 3.795 E-2      |
| 1000         | 35.77 | 1.259 E-2 | 5.036 E-1      | 3.495 E-3                      | 3.483 E-2 | 6.266 E-4      | 8.278 E-5      | 2.934 E-4 | 5.417 E-3       | 3.882 E-2      |
| 1000         | 46.11 | 8.558 E-3 | 5.135 E-1      | 3.054 E-3                      | 3.016 E-2 | 6.247 E-4      | 6.087 E-5      | 2.154 E-4 | 4.622 E-3       | 3.920 E-2      |
| 1000         | 54.71 | 6.490 E-3 | 5.192 E-1      | 2.779 E-3                      | 2.715 E-2 | 6.213 E-4      | 4.879 E-5      | 1.722 E-4 | 4.125 E-3       | 3.941 E-2      |
| 1000         | 62.39 | 5.230 E-3 | 5.230 E-1      | 2.574 E-3                      | 2.503 E-2 | 6.169 E-4      | 4.115 E-5      | 1.447 E-4 | 3.753 E-3       | 3.956 E-2      |
| 1000         | 90.86 | 2.662 E-3 | 5.325 E-1      | 2.058 E-3                      | 1.928 E-2 | 5.991 E-4      | 2.399 E-5      | 8.313 E-5 | 2.820 E-3       | 3.992 E-2      |
| 1200         | 7.53  | 5.524 E-2 | 2.762 E-1      | 1.319 E-2                      | 9.742 E-2 | 5.401 E-3      | 1.549 E-3      | 2.632 E-3 | 1.305 E-2       | 1.351 E-1      |
| 1200         | 11.59 | 3.123 E-2 | 3.123 E-1      | 1.162 E-2                      | 8.249 E-2 | 5.512 E-3      | 9.822 E-4      | 1.686 E-3 | 1.048 E-2       | 1.436 E-1      |
| 1200         | 17.46 | 1.701 E-2 | 3.402 E-1      | 9.851 E-3                      | 6.796 E-2 | 5.409 E-3      | 6.121 E-4      | 1.041 E-3 | 7.931 E-3       | 1.499 E-1      |
| 1200         | 25.46 | 9.031 E-3 | 3.613 E-1      | 8.333 E-3                      | 5.482 E-2 | 5.098 E-3      | 3.751 E-4      | 6.192 E-4 | 5.781 E-3       | 1.545 E-1      |
| 1200         | 31.17 | 6.186 E-3 | 3.712 E-1      | 7.542 E-3                      | 4.795 E-2 | 4.897 E-3      | 2.793 E-4      | 4.519 E-4 | 4.794 E-3       | 1.566 E-1      |
| 1200         | 35.94 | 4.715 E-3 | 3.772 E-1      | 6.973 E-3                      | 4.355 E-2 | 4.745 E-3      | 2.267 E-4      | 3.610 E-4 | 4.161 E-3       | 1.579 E-1      |
| 1200         | 39.76 | 3.815 E-3 | 3.815 E-1      | 6.613 E-3                      | 4.032 E-2 | 4.618 E-3      | 1.921 E-4      | 3.018 E-4 | 3.745 E-3       | 1.588 E-1      |
| 1200         | 54.38 | 1.963 E-3 | 3.926 E-1      | 5.535 E-3                      | 3.176 E-2 | 4.133 E-3      | 1.158 E-4      | 1.722 E-4 | 2.579 E-3       | 1.611 E-1      |
| 1200         | 64.74 | 1.326 E-3 | 3.978 E-1      | 4.953 E-3                      | 2.754 E-2 | 3.879 E-3      | 8.595 E-5      | 1.238 E-4 | 2.070 E-3       | 1.621 E-1      |
| 1200         | 73.20 | 1.002 E-3 | 4.009 E-1      | 4.573 E-3                      | 2.490 E-2 | 3.672 E-3      | 6.975 E-5      | 9.772 E-5 | 1.747 E-3       | 1.627 E-1      |

<sup>*a*</sup> *P* in atm;  $\Sigma P \equiv 0.600$  atm; S/W  $\equiv 2.00$ ; H/O  $\equiv 2.00$ .

In our experiments J/O is situated on the right hand side of the maximum. Therefore the data given in Tables XI and XII cover only this part of the system. Comparing the  $\Delta P$  values of Figs. 1 and 2 we find that  $\Delta P / \sum P$  and therefore the chemical transport for WS<sub>2</sub> is about 3 times larger than for MoS<sub>2</sub>.

In our experiments (Table IV) we charged the ampoules with metalsulfide and iodine, but we did not introduce known amounts of water. Therefore, we have to discuss the possibility of a water content.

We know from a large number of experiments with quartz glass ampoules how difficult it is to exclude traces of water. Taking an ampoule with a volume of 32 ml at 1000 K only 0.07 mg H<sub>2</sub>O will produce an H<sub>2</sub>O pressure of 0.01 atm. Such small amounts of water may easily be introduced with the charge. But a much more important source of water is the wall of the quartz ampoule. One knows (38, 39), that the water content of the usual kinds of quartz glass is about 0.01–0.1 wt %. This means that an ampoule with the wall thickness of 1 mm, an inside diameter of 16 mm, and a length of 160 mm, has a water content within the wall between 2.2 and 22 mg. This value compared with the 0.07 mg H<sub>2</sub>O necessary for producing an  $H_2O$  pressure of 0.01 atm at 1000 K demonstrates that the diffusion of  $H_2O$ out of the wall must produce water pressures which are possibly important for chemical transport reactions. Returning to the chemical transport of WS<sub>2</sub> we take as an example the data given in the last but one row of Table XII with J/O = 64.74 and get

$$P(J_2, initial) =$$

$$P(J_2) + P(WO_2J_2) + 0.5P(HJ) + 0.5P(J_1)$$

$$= 0.498 \text{ atm } (1200 \text{ K})$$

 $P(H_2O, initial) =$ 

$$P(H_2O) + 2P(WO_2J_2) + 2P(SO_2)$$
  
= 0.0154 atm (1200K)

Regarding the foregoing considerations this is no doubt a possible water content. Turning to Fig. 2 for  $J/O \equiv 64.74$  we read  $\Delta P(WO_2J_2) = (4.95 - 2.5) \times 10^{-3} = 2.45 \times 10^{-3}$  [atm]. Now the semiempirical formula for a chemical transport by gas diffusion between equilibrium spaces is applied, see Sect. 3.4.1. With the average temperature T[K], the cross section q [cm<sup>2</sup>] of the ampoule, the length of the diffusion path s [cm] between source and deposit and the heating time t' [hr], from all this follows

$$n(WS_{2}) = \frac{\Delta P(WO_{2}J_{2})}{\sum P} \cdot \frac{T^{0.8} \cdot q \cdot t'}{s} \cdot 1.8 \times 10^{-4} \text{ [mole]}$$
$$= \frac{2.45 \times 10^{-3}}{0.6} \cdot \frac{1100^{0.8} \cdot 2.7 \cdot 40}{10} \cdot 1.8 \times 10^{-4}$$
$$= 2.15 \times 10^{-3} \text{ mole } WS_{2} \triangleq 533 \text{ mg } WS_{2}.$$

This result is of the order of magnitude of the transport rates observed (see Table IV, Expt. 11). Furthermore, Fig. 2 shows that changing to higher water contents (smaller J/O ratios) the result will not be changed considerably. Another important point to be discussed is the hindrance of  $WS_2$  or  $MoS_2$  transport by the addition of graphite. From Sect. 3.3. we know that at 1200 K an initial H<sub>2</sub>O pressure of 0.01 atm by the reaction with graphite with the formation of  $CO + H_2$  is diminished to 0.000003 atm. Simultaneously an  $H_2$  pressure of 0.01 atm is produced. Looking for Eq. (25) we notice that both, the very strong reduction of the H<sub>2</sub>O pressure and the increasing  $H_2$  pressure shift the equilibrium position very much to the left. It is evident, that in this way the  $MO_2J_2$  pressure becomes so small that no sulfide transport can be observed. Finally the equilibria (26) deserve consideration.

$$MoO_2J_{2,g} + 2H_2O_{,g} = MoO_2(OH)_{2,g} + 2HJ_{,g}$$
(26a)

$$Kp(1000 \text{ K}) = 3.81 \times 10^{-4};$$
  
 $Kp(1200 \text{ K}) = 3.94 \times 10^{-3}$ 

$$WO_2J_{2,g} + 2H_2O_{,g} = WO_2(OH)_{2,g} + 2HJ_{,g}$$
(26b)

$$Kp(1000 \text{ K}) = 2.38 \times 10^{-3};$$
  
 $Kp(1200 \text{ K}) = 9.64 \times 10^{-3}$ 

The formation of the molecules  $MoO_2(OH)_2$ and  $WO_2(OH)_2$  is not included in the calculation of Tables XI and XII and in Figs. 1 and 2. In fact this is allowed on that side of the systems rich in iodine and it is only this region which is important as far as our experiments are concerned. Moving on the J/O scale on Fig. 1 and 2 from right to left  $P[MO_2(OH)_2]$  will clearly increase. It starts with pressures as low as  $<10^{-7}$  atm at J/O = 100 and reaches  $P[MO_2(OH)_2] \equiv 0.02 \ P(MO_2J_2)$  at the  $P(MO_2J_2)$  maximum of the curves. Proceeding further to the side rich in water, that is to small values on the J/O scale in Figs. 1 and 2, clearly  $P[MO_2(OH)_2]$  gains of importance. At J/O ~ 0.1 one calculates  $P[MO_2(OH)_2] \approx P(MO_2J_2)$ .

#### 4. Closing Remarks

The chemical transport of  $MoS_2$  and  $WS_2$  and certainly of some other Mo and W compounds using iodine as a transport agent proceeds via the gaseous oxide iodides  $MoO_2J_2$  and  $WO_2J_2$ . These are produced by the presence of small amounts of water. It is obvious that the influence of water especially in closed tube reactions at high temperatures deserves more consideration.

## Acknowledgments

We wish to thank Mrs. B. Plautz for experiments in the  $MoO_2/J_2$  system and Dr. F. Wehmeier for first observations with  $MoS_2/J_2$  and  $WS_2/J_2$ .

### References

- 1. F. WEHMEIER AND H. SCHÄFER (1967), unpublished.
- 2. P. JENSEN AND A. KJEKSHUES, Acta Chem. Scand. 20, 417 (1966).
- 3. L. H. BRIXNER, J. Inorg. Nuclear Chem. 24, 257 (1962).
- R. KERSHAW, M. VLASSE, AND A. WOLD, *Inorg. Chem.* 6, 1599 (1967).
- L. C. UPADHYAYULA, J. J. LOFERSKI, A. WOLD, W. GIRIAT, AND R. KERSHAW, J. Appl. Phys. 39, 4736 (1968).
- 6. H. SCHÄFER, J. Crystal Growth 9, 17 (1971).
- 7. H. SCHÄFER AND B. PLAUTZ, 1967, unpublished.
- 8. L. BEN-DOR AND L. E. CONROY, Isr. J. Chem. 7, 713 (1969).
- 9. H. OPPERMANN, Z. Anorg. Allg. Chem. 383, 285 (1971).
- 10. J. H. DETTINGMEIJER, J. TILLACK, AND H. SCHÄFER, Z. Anorg. Allg. Chem. 369, 161 (1969).
- D. B. ROGERS, R. D. SHAMON, A. W. SLEIGHT, AND J. L. GILLSON, *Inorg. Chem.* 8, 841 (1969).
- G. R. BELTON AND R. L. MCCARRON, J. Phys. Chem. 68, 1852 (1964).
- 13. G. R. BELTON AND A. S. JORDAN, J. Phys. Chem. 69, 2065 (1965).
- 14. G. WEISE AND R. GÜNTHER, Kristall Technik 5, 323 (1970).
- D. R. STULL AND H. PROPHET, "Janaf Thermochemical Tables," 2nd ed., Washington (1971). U.S. Government Printing Office.
- J. BERKOWITZ, M. G. INGHRAM, AND W. A. CHUPKA, J. Chem. Phys. 26, 842 (1957).
- J. H. DETTINGMEIJER AND B. MEINDERS, Z. Anorg. Allg. Chem. 357, 1 (1968).

- 18. H. R. LARSON AND J. F. ELLIOTT, Trans Metallurg. Soc. AIME 239, 1713 (1967).
- 19. P. A. G. O'HARE, E. BENN, F. YU CHENG, AND G. J. KUZMYCZ, J. Chem. Thermodynamics 2, 797 (1970).
- D. R. FREDRICKSON AND M. G. CHASANOV, J. Chem. Thermodynamics 3, 693 (1971).
- 21. J. P. HAGER AND J. F. ELLIOTT, Trans. Metallurg. Soc. AIME 239, 513 (1967).
- 22. O. KUBASCHEWSKI, E. LL. EVANS, AND C. B. ALCOCK, "Metallurgical Thermochemistry," (4th edition), Pergamon Press, Oxford (1967).
- 23. B. DEGROISE AND J. OUDAR, Bull. Soc. Chim. France 1970, 1717 (1970).
- 24. C. BRENDEL, Münster, unpublished.
- 25. H. RABENECK, Münster, unpublished.
- 26. W. BECKMANN, Münster, unpublished.
- 27. J. LEWIS, D. L. MACHIN, R. S. NYHOLM, P. PAULING, AND P. W. SMITH, *Chem. Ind.* **1960**, 259 (1960).
- 28. H. SCHÄFER AND B. SCHWARZER, see H. SCHÄFER, H. G. V. SCHNERING, J. TILLACK, F. KUHNEN, H. WÖHRLE, AND H. BAUMANN, Z. Anorg. Allg. Chem. 353, 281 (1967).

- 29. H. G. SCHULZ AND H. SCHÄFER, unpublished; Dissertation H. G. SCHULZ, Münster 1971.
- 30. S. K. GUPTA, J. Phys. Chem. 73, 4086 (1969).
- H. SCHÄFER, D. GIEGLING, AND K. RINKE, Z. Anorg. Allg. Chem. 357, 25 (1968).
- 32. J. TILLACK, Z. Anorg. Allg. Chem. 357, 11 (1968).
- 33. K. RINKE, H. SCHÄFER, AND W. BECKMANN, Z. Anorg. Allg. Chem. 347, 225 (1966).
- 34. D. BRITNELL, G. W. A. FOWLES, AND R. MANDYCZEWSKY, Chem. Commun. 1970, 608 (1970).
- 35. D. L. SINGLETON (1971), see L. H. NGAI AND F. E. STAFFORD, "Advances High Temperature Chemistry," Vol. 3, Academic Press, New York, London (1971).
- 36. K. RINKE, M. KLEIN, AND H. SCHÄFER, J. Less-Common Metals 12, 497 (1967).
- 37. H. SCHÄFER, "Chemische Transportreaktionen," Verlag Chemie Weinheim (1962); "Chemical Transport Reactions," Academic Press, New York, London 1964.
- 38. A. J. MOULSON AND J. P. ROBERTS, Trans. Faraday Soc. 57, 1208 (1961).
- 39. L. ZYLKA AND H. SCHÄFER, Münster 1962, to be published.